ĐẠI HỌC THẢI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC
ĐINH THỊ NGA
NGHIÊN CỨU ĐIỀU KHIỂN BIÊN ĐỘ VÀ TẦN SỐ HẤP THỤ SÓNG ĐIỆN TỪ CỦA VẬT LIỆU BIẾN HÓA TRONG VÙNG TẦN SỐ QUANG HỌC
LUẬN VĂN THẠC SĨ VẬT LÝ
THÁI NGUYÊN – 2020

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC

ĐINH THỊ NGA

NGHIÊN CỨU ĐIỀU KHIỂN BIÊN ĐỘ VÀ TẦN SỐ HẤP THỤ SÓNG ĐIỆN TỪ CỦA VẬT LIỆU BIẾN HÓA TRONG VÙNG TẦN SỐ QUANG HỌC

Chuyên ngành: Quang học Mã số: 8 44 01 10

LUẬN VĂN THẠC SĨ VẬT LÝ

Cán bộ hướng dẫn khoa học:1.TS. Bùi Xuân Khuyến2.TS. Nguyễn Thị Hiền

THÁI NGUYÊN – 2020

LỜI CAM ĐOAN

Tôi xin cam đoan đây là công trình nghiên cứu của tôi dưới sự hướng dẫn của TS. Bùi Xuân Khuyến và TS. Nguyễn Thị Hiền. Các số liệu, kết quả nêu trong luận án là trung thực và chưa được công bố trong các công trình khác.

HỌC VIÊN

ÐINH THỊ NGA

LỜI CẢM ƠN

Trước tiên, tôi xin gửi lời cảm ơn sâu sắc và chân thành nhất tới TS. Bùi Xuân Khuyến và TS. Nguyễn Thị Hiền. Thầy và cô đã luôn tận tình hướng dẫn, định hướng kịp thời và tạo mọi điều kiện thuận lợi trong suốt quá trình thực hiện và công bố các công trình khoa học để tôi hoàn thành luận văn này.

Tôi xin chân thành cảm ơn sự hỗ trợ nhiệt tình của các thành viên nhóm nghiên cứu MetaGroup – IMS dưới sự hướng dẫn của GS.TS. Vũ Đình Lãm tại Viện Khoa học Vật liệu – Viện Hàn lâm Khoa học và Công nghệ Việt Nam.

Tôi xin chân thành cảm ơn Viện Khoa học Vật liệu, Học Viện Khoa học và Công nghệ và đặc biệt là Khoa Vật lý và Công nghệ – Trường Đại học Khoa học (Đại học Thái Nguyên) đã tạo điều kiện thuận lợi về môi trường khoa học chuyên nghiệp, cơ sở vật chất, hỗ trợ kinh phí và các thủ tục hành chính thuận lợi trong quá trình nghiên cứu và học tập.

Cuối cùng, tôi xin gửi lòng biết ơn đến gia đình đã luôn tin tưởng và là nguồn động lực to lớn để tôi hoàn thành luận văn này.

HỌC VIÊN

ĐINH THỊ NGA

MỤC LỤC

LỜI CAM ĐOAN	i
LỜI CẢM ƠN	ii
MỤC LỤC	iii
DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT	iv
DANH MỤC CÁC HÌNH VĨ, ĐỒ THỊ	vi
MỞ ĐẦU	1
CHƯƠNG I – TỔNG QUAN VẬT LIỆU BIẾN HÓA	
(METAMATERIALs)	5
1.1. Định nghĩa, nguyên lý cơ bản để tạo ra vật liệu biến hóa	5
1.2. Vật liệu biến hóa hấp thụ tuyệt đối sóng điện từ	7
1.3. Sự phối hợp trở kháng của vật liệu hấp thụ với môi trường	12
1.4. Cơ chế tiêu tán năng lượng trong MPAs	14
1.5. Cơ chế hấp thụ trong MPAs	15
1.6. Vật liệu biến hoá hoạt động trên vùng quang học	16
CHƯỜNG II – PHƯỜNG PHÁP NGHIÊN CỨU	20
2.1. Phương pháp mô phỏng	21
2.2. Phương pháp thực nghiệm tại vùng tần số thấp GHz	24
CHƯƠNG III. KẾT QUẢ VÀ THẢO LUẬN	27
3.1. Điều khiển biên độ và tần số hấp thụ dựa trên hiệu ứng chuyển đổi	
phân cực	27
3.2. Tối ưu MPA hấp thụ ánh sáng dải kép	38
KẾT LUẬN CHUNG	45
HƯỚNG NGHIÊN CỨU TIẾP THEO	46
CÔNG TRÌNH CÔNG BỐ LIÊN QUAN ĐẾN LUẬN VĂN	47
TÀI LIỆU THAM KHẢO	48

DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT

Chữ viết tắt	Tiếng Anh	Tiếng Việt
CW	Cut-wire	Dây bị cắt
CWP	Cut-wire pair	Cặp dây bị cắt
CST	Computer simulation technology	Công nghệ mô phỏng bằng máy tính
EMT	Effective Medium Theory	Lý thuyết môi trường hiệu dụng
LHM	Left-hand metamaterial	Vật liệu có chiêt suất âm
FIT	Finite Integration Technique	Kỹ thuật tích phân hữu hạn
CWP	Cut-wirepair	Cấu trúc cặp thanh kim loại
MM	Metamaterial	Vật liệu biến hóa
MPA	Metamaterial perfect absorber	Vật liệu biến hóa hấp thụ tuyệt đối sóng điện từ
TE	Transverse Electric	Điện trường ngang
ТМ	Transverse Magnetic	Từ trường ngang
SRR	Split-ring resonator	Vòng cộng hưởng có rãnh
SRD	Split Ring Disk	Cấu trúc đĩa tròn kết hợp với vòng cộng hưởng có rãnh

DANH MỤC BẢNG

Bảng 2.1 Tham số Drude cho các kim loại thường dùng cho thiết kế [54]...23 *Bảng 3.1*. Thông số mạch hiệu dụng của diode varactor SMV2019-079LF..29

DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ

<i>Hình 1.1</i> . Lịch sử nghiên cứu và phát triển của MPA [19]7
Hình 1.2. Minh họa sự biến đổi của cấu trúc từ CWP hình vuông, CWP hình
bát giác và CWP hình kim cương thu được bằng cách giảm dần
tham số hình dạng m [4]9
<i>Hình 1.3</i> . Phổ hấp thụ phần ảo của độ điện thẩm và phần ảo của độ từ thẩm
của CWP hình kim cương [46]10
Hình 1.4. (a) Ô cơ sở và (b) Phổ phản xạ (xanh lục), phổ truyền qua (xanh
lam) và phổ hấp thụ (màu đỏ) của MPA đầu tiên được tìm ra bởi
Landy năm 2008. Độ hấp thụ A được tính toán từ độ phản xạ R và
độ truyền qua T (A = $1 - T - R$) [4]
<i>Hình 1.5</i> . Minh hoạ sự phối hợp trở kháng hoàn hảo của vật liệu biến hóa với
môi trường hoạt động với các cấu trúc hình lập phương và hình
tru
<i>Hình 1.6</i> . Minh hoạ sự phân bố tổn hao Ohmic và tổn hao điện môi tại tần số
cộng hưởng trong vùng tần số GHz [4]15
Hình 1.7. (a) Sơ đồ của cấu trúc vật liệu meta hấp thụ một đỉnh. Một lớp hạt
vàng và một màng vàng, được ngăn cách bởi một lớp điện môi
Al2O3. (b) Phổ hấp thụ đo được (trên) và mô phỏng (dưới) của
cấu trúc hấp thụ ở góc tới 20 °. (c) Giản đồ của ánh sáng với góc
phân cực θ tới cấu trúc vòng cộng hưởng - đĩa tròn. (d) Sự hấp
thụ băng tần kép trong cấu trúc hấp thụ được đề xuất (vạch xanh
lam) và quang phổ hấp thụ trong khí quyển (vạch đỏ). (e) Cấu
trúc ô cơ sở của chất hấp thụ dựa trên bốn bộ cộng hưởng hình
chữ thập. (f) Độ hấp thụ đo được của cấu trúc với bốn bộ cộng
hưởng hình chữ thập. (g) Sơ đồ của cấu trúc hấp thụ băng tần
rộng và sự hình thành màng kim loại bằng quá trình lắng đọng
phún xạ. (h) Phổ hấp thụ (nét liền) và phổ phản xạ (nét đứt) của
MMA. Inset: ảnh quang học của chất hấp thụ có kích thước là
2x2cm2

Hình 2.8. Sơ đồ quá trình nghiên cứu vật liệu biến hóa hấp thụ sóng điện từ.

- Hình 3.5. (a) Sơ đồ trực quan sự chuyển đổi phân cực u sang v. (b) Độ lớn của các hệ số phản xạ u và hệ số phản xạ v. Các pha của (c) hệ số phản xạ đồng phân cực và (d) hệ số phản xạ phân cực chéo khi vecto điện trường của sóng điện từ tới dọc theo trục u và v. 34

Hình 3.6. Sự phân bố của dòng điện bề mặt cảm ứng trên các bề mặt trên và
dưới ở các tần số cộng hưởng (a) 3.7, (b) 5.7 và (c) 6.0 GHz trong
trường hợp chế độ PA (không có điện áp) và (d) 4.0 GHz cho chế
độ PC (ở điện áp -19)36
Hình 3.7. Phân bố mật độ tổn hao năng lượng tại (a) 3.7 (b) 5.7 và (c) 6.0 GHz
ở chế độ PA (không có điện áp) và (d) 4.0 GHz đối với chế độ PC
(điện áp -19 V)
Hình 3.8. Nghiên cứu sâu hơn trong dải tần THz đối với (a) chế độ PA bằng
cách sử dụng MM cơ bản thứ nhất được giảm kích thước và (b)
chế dộ PC bằng cách sử dụng cấu trúc MM cơ bản thứ hai được
giảm kích thước
Hình 3.9. Cấu trúc ô cơ sở của vật liệu biến hóa hấp thụ tuyệt đối sóng điện
từ cấu tạo từ kim loại và điện môi
<i>Hình 3.10</i> . Phổ hấp thụ của cấu trúc hai thanh kim loại sắp xếp theo phương:
(a) dọc và (b) ngang
Hình 3.11. Phổ hấp thụ của cấu trúc vật liệu biến hóa đề xuất với các tham
số w = 0.05 μ m, a = 0.3 μ m, td = 0.025 μ m, tm = 0.006 μ m 41
Hình 3.12. Ảnh hưởng của (a) độ dày lớp điện môi, (b) độ dày lớp kim loại
và (c) kích thước ô cơ sở đến phổ hấp thụ của MPAError!
Bookmark not defined.
Hình 3.13. Ảnh hưởng của độ rộng (a) và độ dài (b) thanh kim loại đến phổ
hấp thụ của cấu trúc vật liệu đề xuất43
Hình 3.14. Ảnh hưởng của vật liệu kim loại cấu thành đến phổ hấp thụ của
cấu trúc đề xuất44